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Abstract-The dependence of Hiickel n-electron energies, E, on the basic graph theoretical parameters N (the 
number of vertices), Y (the number of edges) and AX (the algebraic structure count) is explored. The form with the 
AX enters E, is established and an equation for E, is developed. It is shown how the early and apparent success of 
the (resonance) theory rested on the fortunate fact that all Kekule structures for benzenoid hydrocarbons and acyclic 
polyenes have the same parity. The significance of AX in determining chemical stability and reactivity is dicussed 
briefly. 

One of the basic postulates of the resonance theory 
description of conjugated molecules is that their ther- 
modynamic stability is an increasing monotonic function 
of the number of Icekult structures that can be drawn for 
each compound.’ This postulate has received support 

both from the approximate application of rigorous 

p-electron valence bond theory’ as well as from the broad 
experience of many organic chemists.2 Largely because of 
the weight of accumulated empirical evidence the 
postulate continues to be accepted in spite of its known 
theoretical limitations.’ 

The aim of the present work was to investigate the 
validity of the resonance theory postulate using a 

graph-theoretical approach developed in the preceeding 
series.‘.>‘* It appears that only a partial justification can 

be obtained and then only under restricted conditions. 
The nature of these restrictions is important. 

The present discussion will be limited to alternant 
hydrocarbons but the conclusions can be readily transfer- 
red to heterocyclic analogs.” The extension to nonalter- 

nants is also possible”” but implies additional difficulties6 
and will not be considered here. 

Although the conceptual background of Hiickel 
molecular-orbital theory“ is completely different from 
valence bond theory,15 a close connection between 
Hiickel and resonance theory has been established.‘” This 

connection was recently analysed systematically using 
graph theory.” 

Derioation Let K’ and K- be the number of even and 
odd KekuM structures, respectively (K’ + K- = K = total 

number of KekulC structures), as defined previ- 
ousIy.5.11.16.17 

Due to the original definition of Dewar and 
Longuet-Higgin? two Kekult structures are of the same 
(different) parity if one can be obtained from the other by 

cyclic transposition of odd (even) number of double 
bonds. A simple procedure for enumerating K’ and Km 
has been given.‘.” Then:” 

det A = (-l)“R(K’ -Km)* (1) 

where A is the adjacency matrix of the molecular graph5.” 
and N is the number of vertices. In order to emphasize the 

distinction between the total number of KekulC struc- 
tures, K, and the difference IK’ - K-1, that appears above, 

the latter was called the ASC = Algebraic Structure 

Count.” The same quantity has also been called the 
CSC = Corrected Structure Count.19 

If x, (j=l,2,..., N) are the eigenvalues of A (“the 
graph spectrum”)~.‘* 

WW* = fi Ix,1 (2) 

and 

2 In (AX) = 2 In lxil (3) 

assuming ASC # 0, i.e. that there is no zeru in the graph 

+Also of Cornell University, Department of Chemistry, Ithaca, spe.ctrum.6 The case of ASC = 0 is treated separately in 

N.Y. 14850, U.S.A. Appendix I. 

*National Academy of Science Fellow 1974. For the intervalM (0,3),fi In x can be approximated by a 
RThe late Professor Coulson in 1949 was first to show that the 

elements of the spectrum of a graph associated with a conjugated 
molecule lie in the range -3 to t3. However, this is just an 

finite polynomial U,(x) = ,gO (--l)‘+‘u,x’. When this 

example of a more general proposition that the eigenvalues x, of a 
polynomial is substituted into Eq (3), one obtains simply: 

simple graph satisfy pm.” >x, > -p_. of which the graph 
theoretical proof was given by L. Collatz and U. Sinogowitz, Abh. 
Math. Sem. Univ. Hamburg 21, 63 (1957). 

2 In (ASC) = 5 (-l)“‘u,W, (4) 
1-O 
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where 

wt = 3 14 

The advantage of Eq (4) is that W,‘s are easily related to 
molecular topology.? Thus, it is well known ” that 

Wo=N (6) 

w1=2v (7) 

where Y is the number of edges in the graph. Analogous 
but more complicated expressions for W, and Wg have 
been derived,’ e.g.: 

w,=8n4-2v+2iD; (8) 
p-1 

where II, is the number of Cmembered rings in the 
molecule and D, the degree (valency)n of the p-th vertex. 

It is easily seen that for altemant hydrocarbons WI is 
just the total rr-electron energy E, (in /3 units).e” In 
Appendix 2 it is shown that 

w,_++-5) 

A common property of ah of the W,‘s for t 24 is that 
they depend on the number and size of the rings contained 
in the molecule (Eq 8). Ring-size effects, which have been 
discussed eIsewhere,7X92’ will not be considered here since 
they unduly complicate the resulting expressions. Termi- 
nation of Eq (4) at the cubic term should not produce any 
serious error since it has already been demonstrau&’ that 
an expression for E, in terms of only the topological 
parameters N, v and ASC (equivalent to termination at 
the square terms) is in error by only 5%. This is an upper 
limit to the possible error since no attempt was made to 
make a least square fit as is implied in Eq (4). Moreover, 
inclusion of the extra degree of freedom in Eq (4) must 
reduce the error still further. A demonstration of this 
point will be made after the final expression is developed. 

The necessary conditions for U, to be a good 
approximation for In x are (c.J Ref 9): 

u, >o (IO) 

U,<&<...<U, (11) 

The numerical values of u’s are irrelevant for further 
discussion and relations (10) and (11) will suffice. 
Combining Eqs (4)-(9) one obtains 

aE, - bE,’ = c (12) 

tSimilarly, the various coefficients of the different powers of x 
in the characteristic polynomial of a graph were also first 
investigated by the late Professor Coulson in 1949. A more 
specific graph theoretical approach to this problem was by A. 
Mowshowitz, J. Combinatorial Theory 12 (B), I77 (1972). 

where 

a=ul+6u,v/N (12a) 

b = 2u,/N’ (12b) 
c = 2 In (ACS) + Q,N + 2u2v (124 

Because of Eqs (10) and (I I) 

bea (13) 

and therefore a good approximate solution of Eq (12) is 

(14) 

A topological formula is thus obtained showing the 
dependence of E, on the number of carbon atoms (N), 
carbon-carbon bonds (v) and the AX of a conjugated 
hydrocarbon. Moreover, the ASC and not the number of 
Kekult! structures plays an important role in determining 
E,, and thus the resonance theory postulate cannot be 
confirmed for the general case. 

The primary focus of this work is to show the 
mathematical form with which the ASC enters E, rather 
than to develop another approximate expression for E, 
However, it is instructive to explore the quality of fit of 
Eq (4) and (14) if these equations were exact, both would 
yield identical values of ~0, uI, uz and u3 for a given set of 
r-networks. As is well known, the least squares fitting of 
data which fluctuates from the fitting equation yields 
equation parameters that depend on the choice of 
independent variable selected. For an arbitrary set of 30 
rr-molecules (10 branched and linear acyclics, IO ben- 
zenoid aromatics and 10 aromatics containing a cyc- 
lobutadiene ring) fitting of the quantity In(ASC)* as 
shown in Eq (4) gave the parameters listed below with a 
standard deviation of 0.041 for the range of In(ASC)’ 
from OG30 to 4.395. With the same set of 30 molecules the 
a-electron energy expressed by Eq (14) gave the 
parameters shown below and a standard deviation in E, 
of 0892 for the range of energies of 2@0 to 27980. It 
should be emphasized that the variables in these 
equations are highly correlated with each other, so that 
the parameters obtained will be sensitive to the composi- 
tion of the set of n-molecules employed. 

parameter Eq (4) Eq (14) 
uo 1.799 0.956 
UI 2.555 I.810 
u2 o-954 1.163 
u1 0.157 0.211 

It has recently been demonstrate&’ that E, is linearly 
related to the measurable total energy, E, + E, Thus, Eq 
(14) would also be used to expressed observably total 
energies in terms of the same graph theoretical parame- 
ters. 

Eq (14) provides a natural explanation for the fact’6”’ 
that the ASC (and not K) is a rough measure for stability 



Graph theory and molecular or&tab-X I45 

(and related chemical behaviour) of conjugated systems. ‘Part IV: I. Gutman and N. TrinajstiC, Croaf. Chem. Acfa 45,539 

Particularly, in a series of isomeric molecules which have (1973) 

the same N and v values and thus the same number of ‘Part V: I. Gutman and N. TrinajstiC, Chem. Phys. I!_&. 20. 257 

rings (it is tacitly assumed that they also have same ring (1973) 

sizes and similar branching), E, is simply proportional to 
‘“Part VI: I. Gutman. N. Trinajstic and T. &vkoviC, Tetrahedron 

ASC.” 
29, 3449 (1973) 

co aD m 
K=5 K=4 K=S 

ASC=l ASC=2 ASC=3 

Htlckel energy 16.00 16.20 16.51 

Therefore, the predictions of the traditional resonance 
theory approach should not be generally valid because the 
parity of the Kekule structures is not taken into account. 
The early apparent success of the theory rested on the 
fortunate fact that all Kekule structures for benzenoid 
hydrocarbons and acyclic polyenes have the same 
parity.“.‘” For these molecules ASC = K. It is only in 
recent years that numerous examples of planar nonben- 
zenoid hydrocarbons have become available.B Since that 
number will surely increase relative to the number of 
benzenoid hydrocarbons it is important that organic 
chemists realize that the usual application of resonance 
theory is not based on a general chemical principle and 
that the more general formulation discussed here should 
lx used. 

Finally, we would like to emphasize that the depen- 
dence of E, on ASC is logarithmic, so that ASC gives 
only a small, second order contribution to E,. This is, of 
course, in agreement with the factB that E, is mainly 
determined by N and v. Thus if one is interested in 
thermodynamic stability, the utility of the ASC is within a 
set of isomeric molecules (see the example above) where 
N and Y are identical. As will be developed elsewhere,m 
however, this limitation does not apply to chemical 
reactivity since it can be shown that reactivity also 
depends on related small differences in ASC. 
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APPEM)tx 1 

The characteristic polynomial P, of the molecular graph G is 
defined as:” 

P,(x) = det (x 1 -A) (15) 

where I is a unit matrix of order N. P, is a polynomial of degree N 
and can be represented as 

P,(x) = 2 a,xN-’ 
r-0 

Hence 

(ASC)’ = IP,(O)l = Iad (l-0 
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Suppose now that there are n zeros in the graph spectrum. Let asc and 
be defined as 

((asc)’ = fi ITI 
ax-. = /j’ 1x,( = (ax)’ (24) 

, 
For reasons of simplicity we consider here the case of n = 1 only. 

where II’ denotes a product of all non-zero eigenvahtes. Since Then from (22a): 
asc > 0. 

,n 
2 In (asc) = C (-l)“‘u,W: 

t-0 
(19) 

aN-. = E P. .(O) 
P-l 

(25) 

where 
But P,_(O) = ((ASC),)‘, where (ASC), is the ASC value for the 
graph G-p. which finally gives (for n = I) 

w: = 8’ lx,l’ (20) 

and Z’ denotes summation over all non-zero eingenvahtes. Gf 
course, 

w:=w, (21) 

and therefore in Eqs (12) and (14) arc should be written instead of 
AX. 

If G-p is the graph obtained from G after deletion of the vertex 

P. 

; P,(x) = 5 P,.,(x) 
P-l 

$ P,(x) = 2 E PI&x) 
p-1 q-1 

Similar relations hold for higher derivatives of PC also.” 
If there are n zeros in the graph spectrum, 

(22a) 

(22b) 

P,(O) = ; P,(O) = . . = -gi# P,(O) = 0 (23a) 

Therefore asc has a similar but less simple meaning that ASC. 
Generalization for n > I follows straightforwardly from Eq (22b 

etc). Thus for n = 2 

(asc)’ = j 2 5 ((AS(Z),)’ 
p-1 4-1 

where (ASC), is the ASC for the graph G-p-q. 

AlwmDM2 . 
In order to derive a topological expression for W, note that 

there necessarily exists a number Q such that 

,$ (14 - Q)' = 0 (28) 

it is natural to expect that Q is near to the mean value of Ix,I’s. But 

(29) 

$ P,(O) = n! aN_. # 0 (23b) 
After substitution of Q=E./N in Eq (Zs), Eq (9) follows 
immediately. 


